Recitation 1. February 23

Focus: Rules of matrix multiplication, Gaussian and Gauss-Jordan elimination.

The most basic rule that you should remember: row column. It shows the order in which you write or compute:

- The first index denotes the row, the second number the column.
- You multiply a row by a column to get a number.
- An $m \times n$ matrix has m rows and n columns.

The formula left matrix multiplication corresponds to row operations explains the mathemagic behind Gaussian or Gauss-Jordan elimination. More precisely, performing row operations on a matrix A is the same as doing $L A$ for some other matrix L, which turns out to be a products of elimination, diagonal and permutation matrices.

1. Rules of matrix multiplication. (Section 2.4 of Strang.) Consider the following matrices:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-1 & 3 & 2
\end{array}\right], \quad C=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right], \quad D=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

Which of these matrix operations are allowed?
a) $A B$
b) $(A+B) C$
c) $C(A+B)$
d) $A D$
e) $D A$
f) $C A D$

Solution: In order to multiply two matrices, number of columns in the first should be equal to number of rows in the second.
a) $A B$ not allowed: we cannot multiply a 2×3 matrix by a 2×3 matrix.
b) $(A+B) C$ not allowed, for the same reason as above.
c) $C(A+B)=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{lll}0 & 2 & 1 \\ 2 & 2 & 4\end{array}\right]=\left[\begin{array}{ccc}0 & -4 & -2 \\ -4 & -4 & -8\end{array}\right]$.
d) $A D=\left[\begin{array}{ccc}1 & 2 & 0 \\ 3 & -1 & 2\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}7 \\ 9\end{array}\right]$.
e) $D A$ not allowed, for the same reason as above.
f) $C A D=C(A D)=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{l}7 \\ 9\end{array}\right]=\left[\begin{array}{l}-14 \\ -18\end{array}\right]$.
2. Binomial formula for matrices. Show that $(A+B)^{2}$ is different from $A^{2}+2 A B+B^{2}$ when

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right]
$$

Write down the correct rule: $(A+B)^{2}=A^{2}+\cdots+B^{2}$.

Solution:

- $(A+B)^{2}=\left[\begin{array}{ll}2 & 2 \\ 3 & 0\end{array}\right]^{2}=\left[\begin{array}{cc}10 & 4 \\ 6 & 6\end{array}\right] ;$
- $A^{2}+2 A B+B^{2}=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]+2\left[\begin{array}{ll}7 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 3 & 0\end{array}\right]=\left[\begin{array}{cc}16 & 2 \\ 3 & 0\end{array}\right]$.
- The correct rule is $(A+B)^{2}=A^{2}+A B+B A+B^{2}$.

3. Consider the following matrices:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad B=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad D=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]
$$

How is each row of $B A, C A, D A$ related to the rows of A ?

Solution:

- The first row of $B A$ is twice the first row of A, and the second is minus the second row of A.
- The first row of $C A$ is the second row of A, while the second row is zero.
- The first row of $D A$ is the second row of A and the second row of $D A$ is minus the second row of A.

So you can see that multiplying a matrix A by another matrix on the left performs row operations. Similarly, multiplying a matrix A by another matrix on the right performs column operations.
4. Gaussian elimination (row echelon form). Solve the following system of linear equations by Gaussian elimination:

$$
\left\{\begin{array}{r}
x+2 y+3 z=1 \\
y+z=2 \\
3 x+y-z=3
\end{array}\right.
$$

Solution: We start by writing the system of linear equations in the matrix form:

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 \\
3 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Now we perform Gaussian elimination on the augmented matrix $\left(r_{i}+\alpha r_{j}\right.$ means that we add α times the j-th row to the i-th row):

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 2 \\
3 & 1 & -1 & 3
\end{array}\right] \xrightarrow{r_{3}-3 r_{1}}\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 2 \\
0 & -5 & -10 & 0
\end{array}\right] \xrightarrow{r_{3}+5 r_{2}}\left[\begin{array}{ccc|c}
\hline 1 & 2 & 3 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & -5 & 10
\end{array}\right]
$$

The system of equations is now equivalent to:

$$
\left\{\begin{aligned}
x+2 y+3 z & =1 \\
y+z & =2 \\
-5 z & =10
\end{aligned}\right.
$$

We can solve this by back substitution, i.e. first get $z=-2$ from the last equation, the plug this into the second equation and get $y=4$, then plug this into the first equation and get $x=-1$.
5. Gauss-Jordan elimination (reduced row echelon form). Same problem as above, but do Gauss-Jordan elimination.

Solution: Starting from the row echelon form we already computed above, let's continue the process of elimination until we get the reduced row echelon form $\left(r_{i} \cdot \alpha\right.$ means that we multiply the i-th row by the number α):

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & -5 & 10
\end{array}\right] \xrightarrow{r_{3} \cdot\left(-\frac{1}{5}\right)}\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & -2
\end{array}\right] \xrightarrow{r_{1}-2 r_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 1 & -3 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & -2
\end{array}\right] \xrightarrow{r_{1}-r_{3}} } \\
& \longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & -2
\end{array}\right] \xrightarrow{r_{2}-r_{3}}\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -2
\end{array}\right]
\end{aligned}
$$

The matrix above is now in reduced row echelon form because not only are all pivots to the right of the pivots above them, but all pivots are 1 and all entries above a pivot are 0 . The system of equations is now equivalent to:

$$
\left\{\begin{array}{l}
x=-1 \\
y=4 \\
z=-2
\end{array}\right.
$$

so we get the same solution as before. Upshot: while Gauss-Jordan elimination (a.k.a. reduced row echelon form) takes more steps than Gaussian elimination (a.k.a. row echelon form), it produces a much simpler system of equations, whose solution is much more obvious.

